THE LATEST INFORMATION
| 九天资讯 |
ortools系列:运筹优化工具google ortools简介
了解运筹学的同学都知道,虽然运筹优化的求解思路很简答,但是要得到一个满意或者堪用的结果却是很难的事情,原因无他,只是因为现在的求解思路有点像暴力搜索,而求解的空间又是非常巨大的,根本不能在约束的时间内得到比较好的结果。尽管后来发展了很多有用的算法和理论,但是如果细细查看其理论本身,思路就是暴力搜索的改进,比如分支定界法或者割平面法,以及其他启发式算法,都是为了减少搜索空间,快速得到一个可行解。
如果是凸优化还好,比如线性规划,一般可以直接得到最优解,如果是非凸优化就很难说了,既不知道是全局最优解也不知道是局部最优解,非常尴尬。对于非凸优化问题,在业界使用比较到的是像遗传算法等这类启发式算法,结果也还过得去。
运筹优化问题,理论是不难的,求解问题才难,难就难在怎么优化代码,怎么设计搜索路径,怎么设计数据结构和存储等,这些都不是搞优化问题的人的优势,于是各种求解器就出来了,包括我们即将学习的google ortools
。
前面说了,运筹问题的求解思路不难,基本上是把目标函数写出来,把各种约束条件写出来,基本就把问题说明白了,但是编程始终是个问题。于是,一些商业公司就组织了一帮PHD专门开发这类的软件,比较有名的有IBM ILOG Cplex
,Gurobi
,FICO Xpress
,MOSEK
等,也有一些专门针对具体领域定制的求解器。商业求解器的好处是计算速度快,能解决问题的规模也更大,缺点是死贵死贵,普通企业根本用不起。
开源的求解器也有一些,比如 德国柏林ZIB研究中心的SCIP
, GLPK
,LP_Solve
,COIN-OR旗下的CBC
和SYMPHONY
,Google开发的ortools
,国内的杉树科技也有一个开源求解器LEAVES
,但是杉树忙着搞商业化,对开源的LEAVES
似乎不是很上心,支持的功能不多。对于无约束优化问题,很多软件如MATLAB
,SCIPY
也提供了很好用的函数调用。
开源求解器毕竟不挣钱,所以在计算性能和问题规模上也不能苛责太多,不多对于大部分中小企业也够用了。
各个求解器的比较可以参考这篇文章:运筹学数学规划|离散优化求解器大搜罗,讲得比较详细了。
从ortools的页面上看到它是这样说的:
OR-Tools是一个用于优化的开源软件套件,用于解决车辆路径、流程、整数和线性规划以及约束编程等世界上最棘手的问题。
同时OR-Tools提供了C++,Python,Java,.NET的接口,同时提供统一接口封装来调用商业求解器如Gurobi, CPLEX等,也包括开源求解器如SCIP, GLPK, ortools等。提供运筹优化工具统一接口的概念和coin-or
正在做的事情有点像呢。
当前ortools提供的优化器包括: - 约束规划 - 线性与混合整数规划 - 路径规划 - 调度规划 - 网络规划 - 装箱
通过查阅官方提供的案列,基本能解决大部分的优化问题,美中不足的是,装箱问题提供的只要背包问题解法,对于三维装箱问题,需要使用约束规划来求解。
ortools文档托管在developers.google.cn
上,需要越墙,所以我把官方文档copy了一份到github上,地址是:google_ortools_guide
这里我们以一个简单的线性规划的例子让大家对ortools有个基本了解,和大部分优化求解器的使用方法差不多,定义变量,定义约束,定义目标函数,调用求解,查看结果。
问题背景:有76中食物 ,每种食物单位重量或体积包含j中营养物质 ,每种食物的价格是 ,每年需要的各项营养物质的总量是 .
求:如何搭配食物,既能满足营养成分的需求,又能花最少的钱。
用公式表示就是: 假设每样食物需求量是 ,
目标函数:
约束:
from ortools.linear_solver import pywraplp
def main():
# Commodity, Unit, 1939 price (cents), Calories, Protein (g), Calcium (g), Iron (mg),
# Vitamin A (IU), Thiamine (mg), Riboflavin (mg), Niacin (mg), Ascorbic Acid (mg)
data = [
['Wheat Flour (Enriched)', '10 lb.', 36, 44.7, 1411, 2, 365, 0, 55.4, 33.3, 441, 0],
['Macaroni', '1 lb.', 14.1, 11.6, 418, 0.7, 54, 0, 3.2, 1.9, 68, 0],
['Wheat Cereal (Enriched)', '28 oz.', 24.2, 11.8, 377, 14.4, 175, 0, 14.4, 8.8, 114, 0],
['Corn Flakes', '8 oz.', 7.1, 11.4, 252, 0.1, 56, 0, 13.5, 2.3, 68, 0],
['Corn Meal', '1 lb.', 4.6, 36.0, 897, 1.7, 99, 30.9, 17.4, 7.9, 106, 0],
['Hominy Grits', '24 oz.', 8.5, 28.6, 680, 0.8, 80, 0, 10.6, 1.6, 110, 0],
['Rice', '1 lb.', 7.5, 21.2, 460, 0.6, 41, 0, 2, 4.8, 60, 0],
['Rolled Oats', '1 lb.', 7.1, 25.3, 907, 5.1, 341, 0, 37.1, 8.9, 64, 0],
['White Bread (Enriched)', '1 lb.', 7.9, 15.0, 488, 2.5, 115, 0, 13.8, 8.5, 126, 0],
['Whole Wheat Bread', '1 lb.', 9.1, 12.2, 484, 2.7, 125, 0, 13.9, 6.4, 160, 0],
['Rye Bread', '1 lb.', 9.1, 12.4, 439, 1.1, 82, 0, 9.9, 3, 66, 0],
['Pound Cake', '1 lb.', 24.8, 8.0, 130, 0.4, 31, 18.9, 2.8, 3, 17, 0],
['Soda Crackers', '1 lb.', 15.1, 12.5, 288, 0.5, 50, 0, 0, 0, 0, 0],
['Milk', '1 qt.', 11, 6.1, 310, 10.5, 18, 16.8, 4, 16, 7, 177],
['Evaporated Milk (can)', '14.5 oz.', 6.7, 8.4, 422, 15.1, 9, 26, 3, 23.5, 11, 60],
['Butter', '1 lb.', 30.8, 10.8, 9, 0.2, 3, 44.2, 0, 0.2, 2, 0],
['Oleomargarine', '1 lb.', 16.1, 20.6, 17, 0.6, 6, 55.8, 0.2, 0, 0, 0],
['Eggs', '1 doz.', 32.6, 2.9, 238, 1.0, 52, 18.6, 2.8, 6.5, 1, 0],
['Cheese (Cheddar)', '1 lb.', 24.2, 7.4, 448, 16.4, 19, 28.1, 0.8, 10.3, 4, 0],
['Cream', '1/2 pt.', 14.1, 3.5, 49, 1.7, 3, 16.9, 0.6, 2.5, 0, 17],
['Peanut Butter', '1 lb.', 17.9, 15.7, 661, 1.0, 48, 0, 9.6, 8.1, 471, 0],
['Mayonnaise', '1/2 pt.', 16.7, 8.6, 18, 0.2, 8, 2.7, 0.4, 0.5, 0, 0],
['Crisco', '1 lb.', 20.3, 20.1, 0, 0, 0, 0, 0, 0, 0, 0],
['Lard', '1 lb.', 9.8, 41.7, 0, 0, 0, 0.2, 0, 0.5, 5, 0],
['Sirloin Steak', '1 lb.', 39.6, 2.9, 166, 0.1, 34, 0.2, 2.1, 2.9, 69, 0],
['Round Steak', '1 lb.', 36.4, 2.2, 214, 0.1, 32, 0.4, 2.5, 2.4, 87, 0],
['Rib Roast', '1 lb.', 29.2, 3.4, 213, 0.1, 33, 0, 0, 2, 0, 0],
['Chuck Roast', '1 lb.', 22.6, 3.6, 309, 0.2, 46, 0.4, 1, 4, 120, 0],
['Plate', '1 lb.', 14.6, 8.5, 404, 0.2, 62, 0, 0.9, 0, 0, 0],
['Liver (Beef)', '1 lb.', 26.8, 2.2, 333, 0.2, 139, 169.2, 6.4, 50.8, 316, 525],
['Leg of Lamb', '1 lb.', 27.6, 3.1, 245, 0.1, 20, 0, 2.8, 3.9, 86, 0],
['Lamb Chops (Rib)', '1 lb.', 36.6, 3.3, 140, 0.1, 15, 0, 1.7, 2.7, 54, 0],
['Pork Chops', '1 lb.', 30.7, 3.5, 196, 0.2, 30, 0, 17.4, 2.7, 60, 0],
['Pork Loin Roast', '1 lb.', 24.2, 4.4, 249, 0.3, 37, 0, 18.2, 3.6, 79, 0],
['Bacon', '1 lb.', 25.6, 10.4, 152, 0.2, 23, 0, 1.8, 1.8, 71, 0],
['Ham, smoked', '1 lb.', 27.4, 6.7, 212, 0.2, 31, 0, 9.9, 3.3, 50, 0],
['Salt Pork', '1 lb.', 16, 18.8, 164, 0.1, 26, 0, 1.4, 1.8, 0, 0],
['Roasting Chicken', '1 lb.', 30.3, 1.8, 184, 0.1, 30, 0.1, 0.9, 1.8, 68, 46],
['Veal Cutlets', '1 lb.', 42.3, 1.7, 156, 0.1, 24, 0, 1.4, 2.4, 57, 0],
['Salmon, Pink (can)', '16 oz.', 13, 5.8, 705, 6.8, 45, 3.5, 1, 4.9, 209, 0],
['Apples', '1 lb.', 4.4, 5.8, 27, 0.5, 36, 7.3, 3.6, 2.7, 5, 544],
['Bananas', '1 lb.', 6.1, 4.9, 60, 0.4, 30, 17.4, 2.5, 3.5, 28, 498],
['Lemons', '1 doz.', 26, 1.0, 21, 0.5, 14, 0, 0.5, 0, 4, 952],
['Oranges', '1 doz.', 30.9, 2.2, 40, 1.1, 18, 11.1, 3.6, 1.3, 10, 1998],
['Green Beans', '1 lb.', 7.1, 2.4, 138, 3.7, 80, 69, 4.3, 5.8, 37, 862],
['Cabbage', '1 lb.', 3.7, 2.6, 125, 4.0, 36, 7.2, 9, 4.5, 26, 5369],
['Carrots', '1 bunch', 4.7, 2.7, 73, 2.8, 43, 188.5, 6.1, 4.3, 89, 608],
['Celery', '1 stalk', 7.3, 0.9, 51, 3.0, 23, 0.9, 1.4, 1.4, 9, 313],
['Lettuce', '1 head', 8.2, 0.4, 27, 1.1, 22, 112.4, 1.8, 3.4, 11, 449],
['Onions', '1 lb.', 3.6, 5.8, 166, 3.8, 59, 16.6, 4.7, 5.9, 21, 1184],
['Potatoes', '15 lb.', 34, 14.3, 336, 1.8, 118, 6.7, 29.4, 7.1, 198, 2522],
['Spinach', '1 lb.', 8.1, 1.1, 106, 0, 138, 918.4, 5.7, 13.8, 33, 2755],
['Sweet Potatoes', '1 lb.', 5.1, 9.6, 138, 2.7, 54, 290.7, 8.4, 5.4, 83, 1912],
['Peaches (can)', 'No. 2 1/2', 16.8, 3.7, 20, 0.4, 10, 21.5, 0.5, 1, 31, 196],
['Pears (can)', 'No. 2 1/2', 20.4, 3.0, 8, 0.3, 8, 0.8, 0.8, 0.8, 5, 81],
['Pineapple (can)', 'No. 2 1/2', 21.3, 2.4, 16, 0.4, 8, 2, 2.8, 0.8, 7, 399],
['Asparagus (can)', 'No. 2', 27.7, 0.4, 33, 0.3, 12, 16.3, 1.4, 2.1, 17, 272],
['Green Beans (can)', 'No. 2', 10, 1.0, 54, 2, 65, 53.9, 1.6, 4.3, 32, 431],
['Pork and Beans (can)', '16 oz.', 7.1, 7.5, 364, 4, 134, 3.5, 8.3, 7.7, 56, 0],
['Corn (can)', 'No. 2', 10.4, 5.2, 136, 0.2, 16, 12, 1.6, 2.7, 42, 218],
['Peas (can)', 'No. 2', 13.8, 2.3, 136, 0.6, 45, 34.9, 4.9, 2.5, 37, 370],
['Tomatoes (can)', 'No. 2', 8.6, 1.3, 63, 0.7, 38, 53.2, 3.4, 2.5, 36, 1253],
['Tomato Soup (can)', '10 1/2 oz.', 7.6, 1.6, 71, 0.6, 43, 57.9, 3.5, 2.4, 67, 862],
['Peaches, Dried', '1 lb.', 15.7, 8.5, 87, 1.7, 173, 86.8, 1.2, 4.3, 55, 57],
['Prunes, Dried', '1 lb.', 9, 12.8, 99, 2.5, 154, 85.7, 3.9, 4.3, 65, 257],
['Raisins, Dried', '15 oz.', 9.4, 13.5, 104, 2.5, 136, 4.5, 6.3, 1.4, 24, 136],
['Peas, Dried', '1 lb.', 7.9, 20.0, 1367, 4.2, 345, 2.9, 28.7, 18.4, 162, 0],
['Lima Beans, Dried', '1 lb.', 8.9, 17.4, 1055, 3.7, 459, 5.1, 26.9, 38.2, 93, 0],
['Navy Beans, Dried', '1 lb.', 5.9, 26.9, 1691, 11.4, 792, 0, 38.4, 24.6, 217, 0],
['Coffee', '1 lb.', 22.4, 0, 0, 0, 0, 0, 4, 5.1, 50, 0],
['Tea', '1/4 lb.', 17.4, 0, 0, 0, 0, 0, 0, 2.3, 42, 0],
['Cocoa', '8 oz.', 8.6, 8.7, 237, 3, 72, 0, 2, 11.9, 40, 0],
['Chocolate', '8 oz.', 16.2, 8.0, 77, 1.3, 39, 0, 0.9, 3.4, 14, 0],
['Sugar', '10 lb.', 51.7, 34.9, 0, 0, 0, 0, 0, 0, 0, 0],
['Corn Syrup', '24 oz.', 13.7, 14.7, 0, 0.5, 74, 0, 0, 0, 5, 0],
['Molasses', '18 oz.', 13.6, 9.0, 0, 10.3, 244, 0, 1.9, 7.5, 146, 0],
['Strawberry Preserves', '1 lb.', 20.5, 6.4, 11, 0.4, 7, 0.2, 0.2, 0.4, 3, 0]];
# 需要的各种营养素最小需求量
nutrients = [
['Calories (1000s)', 3],
['Protein (grams)', 70],
['Calcium (grams)', 0.8],
['Iron (mg)', 12],
['Vitamin A (1000 IU)', 5],
['Vitamin B1 (mg)', 1.8],
['Vitamin B2 (mg)', 2.7],
['Niacin (mg)', 18],
['Vitamin C (mg)', 75]]
# 初始化求解器
solver = pywraplp.Solver('SolveStigler',
pywraplp.Solver.GLOP_LINEAR_PROGRAMMING)
#
food = [[]] * len(data)
# Objective: minimize the sum of (price-normalized) foods.
objective = solver.Objective()
for i in range(0, len(data)):
food[i] = solver.NumVar(0.0, solver.infinity(), data[i][0]) # 定义变量:最小值,最大值,名称
objective.SetCoefficient(food[i], 1) # 定义目标函数的变量的系数
# 定义求最大值还是最小值
objective.SetMinimization()
# 定义约束
constraints = [0] * len(nutrients)
for i in range(0, len(nutrients)):
constraints[i] = solver.Constraint(nutrients[i][1], solver.infinity())
for j in range(0, len(data)):
constraints[i].SetCoefficient(food[j], data[j][i + 3])
# 求解
status = solver.Solve()
# 打印结果
if status == solver.OPTIMAL:
# Display the amounts (in dollars) to purchase of each food.
price = 0
num_nutrients = len(data[i]) - 3
nutrients = [0] * (len(data[i]) - 3)
for i in range(0, len(data)):
price += food[i].solution_value()
for nutrient in range(0, num_nutrients):
nutrients[nutrient] += data[i][nutrient + 3] * food[i].solution_value()
if food[i].solution_value() > 0:
print("%s=%f" % (data[i][0], food[i].solution_value()))
print('Optimal annual price: $%.2f' % (365 * price))
else: # No optimal solution was found.
if status == solver.FEASIBLE:
print('A potentially suboptimal solution was found.')
else:
print('The solver could not solve the problem.')
if __name__ == '__main__':
main()
大家看完记得关注点赞,欢迎大家关注运筹优化社区。